111 research outputs found

    Mesoscale mapping of sediment source hotspots for dam sediment management in data-sparse semi-arid catchments

    Get PDF
    Land degradation and water availability in semi-arid regions are interdependent challenges for management that are influenced by climatic and anthropogenic changes. Erosion and high sediment loads in rivers cause reservoir siltation and decrease storage capacity, which pose risk on water security for citizens, agriculture, and industry. In regions where resources for management are limited, identifying spatial-temporal variability of sediment sources is crucial to decrease siltation. Despite widespread availability of rigorous methods, approaches simplifying spatial and temporal variability of erosion are often inappropriately applied to very data sparse semi-arid regions. In this work, we review existing approaches for mapping erosional hotspots, and provide an example of spatial-temporal mapping approach in two case study regions. The barriers limiting data availability and their effects on erosion mapping methods, their validation, and resulting prioritization of leverage management areas are discussed.BMBF, 02WGR1421A-I, GROW - Verbundprojekt SaWaM: Saisonales Wasserressourcen-Management in Trockenregionen: Praxistransfer regionalisierter globaler Informationen, Teilprojekt 1DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Case report: First case report of an Emirati child with a novel gene variant causing aromatic L-amino acid decarboxylase deficiency

    Get PDF
    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare, neurometabolic disorder resulting from biallelic mutations in the dopa decarboxylase (DDC) gene. This is the first reported case of AADC deficiency in the United Arab Emirates (UAE) and describes an Emirati male patient who presented in the first few months of life with a severe phenotype of global hypotonia, developmental delay and oculogyric crisis. Following whole exome sequencing, a novel homozygous mutation in the DDC gene (c.1144G>T, p.Val382Phe) was reported and the patient underwent further testing, after which a diagnosis of AADC deficiency was confirmed. This mutation has not been previously described, but the clinical phenotype and corresponding biochemical profile confirmed that it is a pathogenic variant. The patient is currently managed at a tertiary referral center in the UAE and is treated in accordance with published guidance on AADC deficiency, including the recommended medical therapy combined with multidisciplinary care from a team of specialists. Some symptomatic improvements have been reported but at 5 years of age the patient continues to exhibit profound developmental delay, oculogyric crisis and is prone to recurrent respiratory infections. In order to improve outcomes for patients with AADC deficiency in the Middle Eastern region, there is an urgent need to raise the index of clinical suspicion, particularly among primary care physicians, pediatricians, and pediatric neurologists, and to improve access to diagnostic testing. This is particularly relevant at the current time, given the ongoing development of potentially disease-modifying gene therapy for AADC deficiency

    Predicting the capability of oxidized cnw adsorbents for the remediation of copper under optimal operating conditions using rsm and ann models

    Get PDF
    Metal pollutants such as copper released into the aqueous environment have been increasing as a result of anthropogenic activities. Adsorption-based treatment technologies offer opportunities to remediate metal pollutants from municipal and industrial wastewater effluent. The aim of this work was to evaluate the capability of modified cellulose nanowhisker (CNW) adsorbents for the remediation of copper from water matrices under realistic conditions using response surface methodology (RSM) and artificial neural network (ANN) models. Considerations for design and application to remediate Cu(II) from wastewater by developing a continuous flow experiment are described in this study. However, the physical structure of modified CNW adsorbents renders them unsuitable for use in column operation. Therefore, a more detailed study of the mechanical properties of CNW adsorbents would be necessary in order to improve the strength and stability of the adsorbents. This work has demonstrated that modified CNW are promising adsorbents to remediate copper from water matrices under realistic conditions including wastewater complexity and variability. The use of models to predict the test parameter system and account for matrix variability when evaluating CNW adsorbents for remediating Cu from a real-world wastewater matrix may also provide the foundation for assessing other treatment technologies in the future

    Effect of glazes on mechanical and physical properties of various full contour zirconia materials subjected to low temperature degradation

    Full text link
    OBJECTIVES: To evaluate different surface treatment effects on physical and mechanical properties of various types of zirconia subjected to hydrothermal aging. MATERIALS AND METHODS: This is an in vitro study on four different types of monolithic zirconia material: VITA-Zahnfabrik VITA-YZ T, VITA-YZ HT, VITA-YZ ST, VITA-YZ XT. A total of 240-disc specimens were prepared by core-drilling and sectioned with a diamond blade. Specimens were sintered according to the manufacturer’s recommendations. Half of the specimens in each group were then glazed and subjected to low temperature degradation. Three different locations were evaluated for surface roughness each group of the four different materials by using Mitutoyo SJ-201 contact profilometer with a 5μm diamond stylus tip. A Bruker D2 Phaser diffractometer was used for X-ray diffraction (XRD) measurements. Crystallographic phase identification and analysis were performed through Rietveld refinements on XRD raw data. Biaxial flexural strength was determined and the fractography was analyzed. Descriptive data such as surface roughness, crystallographic phase contents, and flexural strength were indicated as mean and standard deviation (SD). Statistical analysis was performed using multi-way ANOVA and linear regression model followed by the post hoc Tukey tests. RESULTS: All VITA YZ zirconia non-glazed control specimens showed higher means of biaxial flexural strength values compared to glazed specimens. VITA YZ HT specimens showed the highest mean of biaxial flexural strength in this study with values of 781 – 1305 MPa. On the other hand, VITA YZ XT expressed the lowest mean of biaxial flexural strength values of 466 – 972 MPa. The surface roughness of monolithic VITA YZ materials was statistically significantly low for the various zirconia materials. Aging of various zirconia materials showed statistically significant effect of aging on glazed specimens was not statistically significant. There was no significant difference in the tetragonal phase content of all VITA YZ materials (p > 0.05). There was significant difference in the cubic phase content of all VITA YZ materials (p 0.05). There was significant difference in the rhombohedral phase of all VITA YZ materials as well as aging process (p < 0.05). CONCLUSIONS: Biaxial flexural strength was significantly affected by glazing, type of material, treatment protocol. Biaxial flexural strength was significantly affected by the interaction between type of material and treatment protocol, glazing and type of material. The VITA YZ ST control had the lowest surface roughness among all the groups. The difference was statistically significant. The type of material, aging, and the interaction effect between the material and aging were significantly different for XRD in non-glazed material. The VITA YZ T showed the lowest mean of yttrium oxide (Y2O3) molecular fraction. On the other hand, YZ XT showed the highest mean of Yttrium oxide (Y2O3) molecular fraction

    Pseudoxanthomaelasticum with congestive heart failure: A case report

    Get PDF
    Pseudoxanthomaelasticum (PXE) is a rare systemic disease of connective tissue primarily affecting the skin, retinae, and cardiovascular system. Clinically it has high hetrogenicity in age of onset, extent and severity of disease. Its cardiovascular effect has a wide clinical spectrum extending from mental fatigue to early death from myocardial infarction. Very rarely it may present with gastrointestinal haemorrhage. It has no specific treatment. However, adjustments of the life stile are important to reduce morbidity. Moreover, first degree relatives should be carefully examined for cutaneous and ophthalmic features of this disease. Here we describe one case of Pseudoxanthoma Elasticum. Sudan Journal of Medical Sciences Vol. 1(1) 2006: 62-6

    Poor Cognitive Agility Conservation in Obese Aging People

    Get PDF
    Life expectancy has been boosted in recent decades at expenses of increasing the ageassociated diseases. Dementia, for its incidence, stands out among the pathologies associated with aging. The exacerbated cognitive deterioration disables people from carrying out their daily lives autonomously and this incidence increases exponentially after 65 years of age. The etiology of dementia is a miscellaneous combination of risk factors that restrain the quality of life of our elderly. In this sense, it has been established that some metabolic pathologies such as obesity and diabetes act as a risk factor for dementia development. In contrast, a high educational level, as well as moderate physical activity, have been shown to be protective factors against cognitive impairment and the development of dementia. In the present study, we have evaluated the metabolic composition of a population between 60–90 years old, mentally healthy and with high academic degrees. After assessing agility in mental state, we have established relationships between their cognitive abilities and their body composition. Our data support that excess body fat is associated with poorer maintenance of cognition, while higher percentages of muscle mass are associated with the best results in the cognitive tests.Junta de Andalucia European Commission P20-01061 P18-RT-3324 P20-01293 PECART-0096-2020Ministry of Science and Innovation, Spain (MICINN) Spanish Government PID2019-110960GB-I0

    Fabrication of 316L stainless steel (SS316L) foam via powder compaction method

    Get PDF
    Metal foam is the cellular structures that made from metal and have pores in their structures. Metal foam also known as the porous metals, which express that the structure has a large volume of porosities with the value of up to 0.98 or 0.99. Porous 316L stainless steel was fabricated by powder metallurgy route with the composition of the SS316L metal powder as metallic material, polyethylene glycol (PEG) and Carbamide as the space holder with the composition of 95, 90, 85, 80, and 75 of weight percent (wt. %). The powders were mixed in a ball mill at 60 rpm for 10 minutes and the mixtures were put into the mold for the pressing. The samples were uniaxially pressed at 3 tons and heat treated by using box furnace at different sintering temperature which are 870°C, 920°C, and 970°C separately. The suitable sintering temperature was obtained from the Thermal Gravimetric Analysis (TGA). There are several tests that have been conducted in order to characterize the physical properties of metal foam such as density and porosity testing, and the morphological testing (Scanning Electron Microscopy (SEM)), and Energy Dispersive X-ray (EDX). From the result, it can be conclude that, the sintering temperature of 920°C was compatible temperature in order to produce the metal foams which have large pores. Other than that, the composition of 85 and 75 wt. % is the best compositions in order to creates the homogenous mixture and allow the formation of large pore uniformly compared to other compositions which in line with the objective to produce foams with low density and high porosity which suitable for implant applications. The average pore size was within range 38.555μm to 54.498 μm which can be classified as micro pores

    Fifth order two-point block backward differentiation formulas for solving ordinary differential equations.

    Get PDF
    The new method derived is called the fifth order two-point Block Backward Differentiation Formulas (BBDF(5)) method for solving first order stiff Ordinary Differential Equations (ODEs). This method possesses the requirement for stiffly stable and suitable to solve stiff problems. We also discussed further the implementation of the method using Newton Iteration. The numerical results are presented to verify the efficiency of this method as compared to the Classical Backward Differentiation Formula (BDF) method and ode15s in Matlab. The BBDF(5) method outperformed the BDF method and ode15s in terms of maximum error and execution time

    Progress in the development of sour corrosion inhibitors: Past, present, and future perspectives

    Get PDF
    Metallic pipelines and gathering tanks play a vital role during oil and gas exploration, production, transmission, and processing. These facilities are usually attacked by corrosion. The use of corrosion inhibitors is one of the most economical and reliable approaches to control the corrosion of oil and gas metallic facilities. This paper looks at the progress made in the development of sour corrosion inhibitors from early 1900 to date. Scientific literatures were reviewed. The review identified four classes of organic corrosion inhibitors for sour environments, namely, amine-based, imidazoline-based, polymer-based, and Gemini-surfactant-based inhibitors. The strengths and weaknesses of these inhibitors were highlighted. The review revealed that the patronage of amine-based chemistries has declined, and the current technology is based on imidazoline and quaternary salt chemistries. The existing knowledge gap and the future research direction in the area of sour corrosion inhibitors development have been highlighted
    corecore